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Abstract 
 

The American Fisheries Act (AFA) of 1998 significantly altered the Bering Sea and 
Aleutian Islands pollock fishery by allowing the formation of harvesting and processing 
cooperatives and defining exclusive fishing rights.  This paper uses data envelopment analysis 
and stochastic production frontier models to examine effects of the AFA on the fishing capacity, 
technical harvesting efficiency (TE), and capacity utilization (CU) of pollock catcher-processors.  
The results indicate that fishing capacity fell by more than thirty percent and that harvesting TE 
and CU measures increased relative to past years.  This work provides examples of how existing 
data, which is currently devoid of operator costs and provides only general indicators of 
earnings, may be used to analyze changes in elements of fleet and vessel performance in 
response to management actions. 
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I.  Introduction 

The American Fisheries Act (AFA) of 1998 significantly changed the nature of the 

offshore Alaskan pollock fishery by removing nine catcher-processors from the fishery and 

allowing the formation of a cooperative structure among the remaining participants -- essentially 

eliminating the longstanding race for fish.  These changes have facilitated longer seasons, greater 

product recovery rates, increased product quality, and a heightened ability to react to both market 

signals when choosing product forms and to regulations regarding Stellar sea lions restrictions.  

As a result, there are many areas where economic analysis of the effects of the AFA would be 

quite informative.  However, the economic data currently available to NMFS staff to analyze 

such changes is quite limited.   

The purpose of this paper is to illustrate ways in which existing data may be used to 

analyze changes in fleet and vessel performance resulting from implementation of the AFA (or 

other management actions).  In particular, this work examines how changes in annual catch have 

compared to changes in harvesting effort, vessel participation, and stock abundance – providing 

estimates of technical harvesting efficiency (TE) and capacity utilization (CU).  Using these 

results, and by focusing on the pollock catcher-processors in particular, we also generate 

measures of fishing capacity and examine how it changed in response to vessel buyouts and the 

introduction of fishing rights under the cooperative structure.   

Due to the current absence of data regarding vessel costs and earnings, the models used to 

estimate fishing capacity for the pollock catcher-processors are based primarily on annual catch 

levels and the inputs and effort used to generate them.  Such models are referred to as “primal”, 

as they are aimed only at representing production relationships and not the behavioral responses 

to market prices.  It should be noted at the outset that primal measures of capacity do not directly 

assess the economic “optimality” of a particular fleet size.  Rather, the estimates indicate the 

maximum output that could be produced with the observed fixed factors of production, resource 

stock, state of technology, etc.  Still, an assessment of how such levels have changed over time 

provides information regarding the catching power of the fleet, how it compares to actual catch, 

and on the likelihood of excess capacity existing in the fishery1. 

                                                 
1 For example, if potential catch is many times greater than actual catch, then in many cases one could likely 
conclude that there is excess capacity in a fishery, even without information on costs or an economic assessment of 
the “optimal” fleet size. 
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In the work that follows, two methodologies (data envelopment analysis [DEA] and 

stochastic production frontiers [SPF]) recently suggested by academics participating in the 

NMFS-organized Expert Panel on Fish Harvesting Capacity Metrics are used to construct 

estimates of harvesting capacity.  Both of the approaches are employed in order to illustrate two 

potential techniques and to gauge the robustness of the findings to model specification2.  While 

the models differ somewhat in the way they are constructed, the DEA and SPF models used here 

estimate capacity by scaling up observed output to reflect each vessel’s potential efficiency and 

capacity utilization increases (based on the observed, best practice technology).   

Because separate measures of TE and CU are generated in the models, the measures will 

also be used to make comparisons between particular groups or time periods of interest.  The 

specific comparisons include the pollock catcher-processor fleet as a whole before and after the 

AFA was implemented, between AFA-eligible and AFA-ineligible vessels, and among vessels 

within particular companies.  These comparisons provide information on how average TE and 

CU changed post-AFA, whether decommissioned vessels had historically lower average TE and 

CU than continuing vessels, and whether such measures are good indicators of companies’ 

likelihood to idle AFA-eligible vessels, respectively.  The predictive power of the TE and CU 

measures in idling and decommissioning decisions is also more formally assessed through Logit 

models.    

The next section introduces and details the methodology underlying the SPF and DEA 

models.  Those readers unfamiliar with, or not interested in, the technical aspects of the SPF and 

DEA models (and their use in capacity estimation) may consult the non-technical appendix for a 

purely intuitive description.  The third section discusses the data used and the results obtained.  

The paper concludes with a further discussion of the findings and of the necessary caveats that 

must be kept in mind when interpreting the results. 

 

II.  Capacity Estimation in DEA and SPF Models 

The theoretical basis of the DEA and SPF models is the distance function, which 

provides a complete characterization of multi-input, multi-output technologies.  Distance 

functions are typically specified with an output or input orientation, where each provides slightly 

                                                 
2 Both DEA and SPF have particular strengths and weakness, but a complete comparison of the models is beyond 
the scope of the current paper.  For a discussion, see Coelli, Rao, and Battese (1998) or Holland and Lee (2001). 



 3

different information.  The output distance function, Do(x,y), provides information regarding the 

potential increases in output from a given set of inputs (relative to the estimated production 

possibilities frontiers [PPF]), while the input distance function, Di(x,y), indicates the amount by 

which input use could be decreased to achieve a given level of output (relative to the estimated 

input isoquants).  The current application focuses on an output orientation, since a main area of 

interest is estimating how potential catch (output) for the catcher-processor fleet has changed 

after the AFA buybacks. 

As discussed by Färe and Primont (1995), the output distance function is defined on the 

producible output set, Y(x), as Do(x,y) = min� {�: (y/�) � Y(x)}.  Thus, Do(x,y) gives the largest 

radial expansion of the output vector for a given input vector that is consistent with the output 

vector belonging to Y(x), where it is assumed that potential increases in output preserve the 

observed output mix3.  It can easily be shown that Do(x,y) � 1 for all feasible output bundles, 

where Do(x,y)=1 along the frontier, and deviations below one indicate increasing levels of 

technical inefficiency.  As a result, the value of the output distance function at each observation 

gives a measure of TE.  

Although DEA and SPF both attempt to identify a best-practice frontier for a group of 

producers, they differ fundamentally in the way they generate the frontiers.  DEA is a non-

parametric method that uses mathematical programming to construct a piece-wise linear 

representation of the frontier of a technology.  Deviations from the frontier are measured and 

used to construct efficiency scores, which can be interpreted as the estimated values of an output 

distance function.  Alternatively, SPF is an econometric approach that estimates parameters for a 

functional representation of a technology, and disentangles deviations from the estimated frontier 

into random error and inefficiency.  TE (distance function) estimates scores are then computed 

from the estimated parameter values and residuals.   

Because SPF and DEA models were originally developed for estimating TE, one must 

make some adaptations in order to use them to generate estimates of capacity (which requires not 

only estimating the production possibilities frontier, as in the TE models, but also estimating how 

far out it can shift).  The change one makes to each of the standard DEA and SPF models 

                                                 
3 One possibly restrictive aspect of this assumption is that actual increases in output may not hold the current output 
mix constant.  Changes in relative prices, stock conditions, or regulations (for both target or bycatch species) may 
dictate a different output mix.  Directional distance functions can be employed in order to find increases in output 
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depends upon one’s interpretation of what is represented by “capacity.”  The different definitions 

of technical4 capacity that have been suggested in the literature all correspond to some maximum 

quantity of output, but differ in their assumptions regarding the level of variable inputs used in 

conjunction with the capital stock.  The approach taken here is to base the measure of technical 

capacity on a maximal level of variable input use following Johansen (1968), Färe, Grosskopf, 

and Kokkelenberg (1989), and Kirkley and Squires (1999). 

More specifically, the definition offered by Johansen5 is “ the maximum amount that can 

be produced per unit of time with existing plant and equipment, provided the availability of 

variable factors of production is not restricted.”  This definition of capacity corresponds to the 

output that could be produced under technically efficient production with variable inputs fully 

employed, but constrained by the fixed factors and the state of technology.  However, when the 

Johansen notion is employed in an empirical setting, and in particular, one where catch is 

governed by a TAC, the variable input use may be far less than theoretically “unrestricted” 

levels.  This implies that resulting capacity estimates are likely to be more realistically obtainable 

than the strict definition connotes -- essentially representing the most output obtainable from a 

set of fixed factors and the maximum observed variable input use. 

It is fairly straightforward to adapt each of the standard DEA and SPF models to generate 

such estimates of capacity.  The DEA model of Färe, Grosskopf, and Kokkelenberg (1989, 

hereafter referred to as “FGK”), to be discussed further later, was constructed so as to directly 

correspond to Johansen’s definition.  As a result, it is easier to implement than SPF when one is 

seeking a Johansen-based measure of capacity.  The “unrestricted” variable input levels in the 

DEA model are determined internally in the model by first selecting groups of “peers” with 

similar fixed inputs, and then finding the maximum observed variable input levels for each 

group.  The SPF approach is slightly more complicated, as one must manually specify the 

unrestricted variable input levels associated with groups sharing similar fixed input endowments.  

Possible specifications include the maximum theoretical variable input levels (such as operating 

                                                                                                                                                             
for any type of expansion -- not just radial -- but given the biological/technical interdependencies and limited species 
caught by this fleet, the observed mix seems to be a reasonable expansion path. 
4 This paper focuses on technical capacity rather than “economic” capacity, which has traditionally been defined in 
terms of the output corresponding to a tangency between a short-run average cost curve and a long-run average cost 
curve.  The technical focus here is due to the current lack of cost data.   
5 Johansen’s definition is equivalent to the current FAO definition of capacity agreed upon by researchers 
representing several nations at a Technical Working Group meeting.  It is also equivalent to that offered by Christy 
(1996), Prochaska (1978), and the Federal Fisheries Investment Task Force Report to Congress.  
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24 hours a day, 365 days a year), the maximum observed levels of each individual vessel, or the 

maximum observed variable input levels of all vessels with similar fixed input endowment.  The 

approach taken here is to use the last specification, which is essentially what is done in the DEA 

program.  Thus, catcher-processors will be grouped according to their size (less than 230 feet in 

length or greater than or equal to 230 feet in length6) and the maximum variable input use7 for 

each group will be used as to represent their unrestricted levels.  Note that this choice also makes 

the SPF and DEA models more similar and comparable, thus increasing the ability to examine 

the robustness of estimates under alternative stochastic and non-stochastic specifications. 

 

DEA Specifications 

Turning the focus to the DEA specification, as described in Färe, Grosskopf, and Lovell 

(1985, 1994) and Coelli, Rao, and Battese (1998), the following output-oriented DEA linear 

program computes the technically efficient output:  
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The Aactivity levels@ (zj) of y and x are the weights for the points on the linear segments 

that define the frontier.  The first three constraints ensure that the observed output bundles stay 

on or within the feasible set, while the last constraint allows for variable returns to scale (VRS).  

A VRS approach is used here to ensure that each vessel is only benchmarked against vessels of 

similar size, as projected points for vessels below the frontier are formed as a convex (rather than 

linear) combination of frontier observations (Coelli, Rao, and Battese, 1998). 

                                                 
6 The 230-foot vessel length was not chosen arbitrarily or in accordance to some federal or ADF&G size 
classification.  Rather, the data elicited a distinct natural break between size classes at 230 feet. 
7 In this paper, the variable inputs are given by crew size, days at sea and tow duration, and fixed inputs are given by 
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The value of the parameter � is the reciprocal of the output distance function, Do(x,y), 

and therefore provides a measure of the possible (radial) increase in outputs under full TE.  

Using the results from the program above, which is solved for each vessel in the data, one can 

determine the technically efficient output for each vessel by scaling observed output levels by �.  

For example, an objective value of � =1.1 indicates that a vessel’s technically efficient output 

equals 1.1 times its current observed output vector. 

Although DEA models were originally designed to measure TE, FGK proposed a 

variation of the standard DEA model given above that was explicitly designed to provide 

measures of capacity output and utilization corresponding to Johansen=s Aunrestricted@ definition 

of capacity discussed earlier.  To implement the FGK DEA model, one computes the maximum 

proportionate increase in outputs, �, when variable inputs are allowed to vary, but fixed inputs 

are held at observed values.  The following output-oriented linear program also allows for VRS: 
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The variable factors are denoted by �̂ , the fixed factors are denoted by � .  Because each 

vessel’s use of variable inputs is not restricted to their observed levels in the FGK model, the 

third constraint involving λ is incorporated, telling one the necessary variable input use required 

to achieve frontier output levels.  Note also that to be on the frontier in the FGK model, vessels 

must have produced the most output for a given level of fixed inputs.  Firms that are not on the 

                                                                                                                                                             
vessel length, tonnage, and horsepower. 
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frontier may be below it because they are either using fixed inputs inefficiently, or because they 

are using lower levels of variable inputs than frontier vessels (or both). 

Using the results from the program above, one obtains vessel-level capacity estimates by 

scaling each vessel’s observed output vector by its estimated value of � – here termed a capacity 

score, similar to � in the standard TE model.  Estimates of capacity for the fleet or fishery as a 

whole are obtained by summing the capacity estimates of all individual vessels8.  In addition, CU 

scores for each vessel may be constructed through the ratio of � / � .  This ratio provides a 

measure of CU that reflects the potential increase in output solely from increased variable input 

use, and not from increased technical inefficiency9.  The interested reader should see FGK 

(1989) for further details.  

 

SPF Specification 

The SPF approach uses a parametric model to econometrically fit the frontier of 

technologies while simultaneously disentangling observed deviations from the frontier into two 

parts: random variation or noise and productive inefficiency.  The functional representation of 

production technologies in SPF models has typically been limited to single output production 

functions, but will be expanded here to accommodate the multiple output technology through use 

of a ray production function. 

The familiar single output SPF model (see Kumbhakar and Lovell, 2000) typically 

expresses production technologies in terms of   

yit = f(xit ;β)�exp{eit} ;         (3) 

eit = - uit + vit, 

where y is the output, f(�) is a functional representation of the production technology, x is a 

vector of inputs, β is a vector of parameters to be estimated, and e is a random error term.  Note 

that actual output, y, may differ from potential output due the observed error, e, which is usually 

specified as including two components.     

                                                 
8 In the presence of increased stock or congestion externalities, fleet capacity may be less than the sum of individual 
vessel capacities. 
9  Primal CU measures have typically been constructed as CU=Yobserved/Ycapacity.  However, if Yobserved is lower than 
Ycapacity primarily because of technical inefficiency, then the CU measure’s interpretation becomes confounded.  By 
constructing CU=Ytechnically efficient/Ycapacity = ������ as done here and developed in FGK, the interpretation of CU 
measures is clearer, and reflects only increases in output from increased variable input use – not increased technical 
efficiency. 
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The first component represents differences between observed and potential output due to 

inefficient input use, and is denoted by u.  The second component, v, is attributed to purely 

random variations in output (unrelated to inefficient factor use), analogous to the error term in 

standard regression models.  In fisheries contexts, such random errors are often attributed to 

weather conditions, variations in stock conditions, luck, or possibly introduced by measurement 

error.   

In this paper it is assumed that v is an independent and identically distributed (i.i.d.) N(0, 

�v
2) random variable, and u is distributed as a truncation at zero of the N(mit, �u

2) distribution, 

where mit = �i Dit ��i�	and  Dit is a dummy variable equal to one for the ith vessel in each period, 

zero otherwise.  This approach makes use of the panel nature of the current data set, allowing for 

TE estimates that reflect potentially different efficiency levels and patterns and for each vessel.  

See Kumbhakar (pg. 83) and Coelli, Rao, and Battese (pg. 235) for further discussions on this 

specification.   

An additional parameter, 
, is introduced here in order to ease the maximum likelihood 

estimation (MLE) of the variance parameters.  First, a “combined” variance is constructed in 

terms of the random error and inefficiency term, given by �s
2 = �v

2 + �u
2.  Next, the parameter 
 

is defined as  
= �u
2 / �s

2.  This reparameterization allows one to undertake a grid search for 
, 

which by definition must lie between 0 and 1, which is much easier than attempting to estimate 

�v
2 and �u

2 individually (which may lead to negative variances in some cases). 

Two alternative functional representations that allow for multiple-output primal 

specifications are the distance function and the ray production function (to be defined shortly).  

They also allow for the two-part error decomposition discussed in the previous single output 

model.  While these two functions differ in the way they are implemented, either can be used to 

estimate technically efficient output and to construct estimates of capacity.  However, difficulties 

often arise when using the stochastic output distance function in applications in which there are 

zero-valued outputs10.   

                                                 
10 The problems arise because a lack of data on the dependent variable (Do(x,y)) prohibits one from directly 
estimating the model.  The approach typically used to overcome this problem is to recognize the linear output 
homogeneity of the distance function, which generates the equality Do(x,�y) = � Do(x,y).  Next, � is specified as the 
inverse of either one of the outputs, yi

-1, or the Euclidean norm of the output vector, ||y||-1, and logs are taken.  The 
result is an equality that now has an observable left-hand-side variable for estimation: -ln||y|| = ln Do(x,y/||y||) – ln 
Do(x,y).  However, for any observation in which yi is equal to zero, the logarithm of the right-hand side variable is 
undefined, precluding estimation of the model. 
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Such problems are avoided here by utilizing a different but equivalent representation of 

the technology that is not subject to problems with zero-valued outputs: the stochastic ray 

production function (Löthgren, 1997).  The ray production function model is derived by 

augmenting the standard, single output production given by  

�(x, �) = max {y � R+ : y � Y(x, �) },      (4) 

where x�RN
+, Y(x, �) is the producible output set, and 
 includes all regulatory variables and 

stock information in each period (e.g., abundance, fish size and age distribution, and fish spatial 

and temporal distribution).  Information on 
 in the current application is limited to annual 

Bering Sea stock estimates for each of the fleets’ primary catch (pollock, flatfish, Pacific cod), 

since for the most part, regulatory effects are difficult to quantify and thus will be viewed as a 

latent variable that impacts the shape and location of Y(x,�), following Weninger (2001).  This 

single-output representation is transformed into a multiple-output generalization of the 

production function by expressing the output vector of a multi-output technology in polar-

coordinate form: 

y = ||y|| � m(�),          (5) 

This form for y implies that the multiple-output ray production function takes the form: 

�(x,�, �) = max {||y||�R+ : ||y||� m(�)) � Y(x, �)}.      (6) 

Here, y�RM
+, ||y|| is the Euclidean norm of the output vector ( ||y|| = 

2/1

1

2 )(�
�

m

i
iy ), � represents 

the polar-coordinate angles of the output vector (rather than the standard rectangular 

coordinates), and the function m: [0, �/2]M-1 
� [0,1]M is defined in terms of the output polar-

coordinate angles as 

mi(�) = cos�i�
�

�

1

0

i

j
sin�j, i=1,…M,             (7)  

where sin�0 = cos�M =1.  The vector of polar-coordinate angles � (which are used in estimation) 

are easily obtained from the inverse transformation of (7),  m-1(y /||y||), or  

�i (y) = cos-1(yi/ ||y||�
�

�

1

0

i

j
sin�j),  i=1…M-1     (8) 

While the conventional single-output production function given in (4) represents the 

maximum output obtainable from a given bundle of inputs, the multiple output ray production 

function in (6) represents the maximum (frontier) output norm obtainable given inputs and the 
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observed output mix (as represented by the output polar coordinates11).  In addition, if Y(x, �) 

satisfies standard assumptions12, the ray function is positively monotonic in inputs, or �(x”, �, �) 

� �(x’, �, � ), � x” � x’.    

To model the technology in the context of the SPF framework discussed earlier, the link 

between the ray production function and the output distance function can be exploited to allow 

for a natural decomposition of inefficiency and random error.  This relationship is easily derived 

by recognizing that, by definition, the output distance function represents the ratio of the 

observed output norm to the frontier output norm (Shephard, 1970).  Thus, in the context of the 

ray production frontier this relationship implies 

Do(x,y) = ||y|| / �(x, �, �),  (9) 

which can be rearranged to yield  

||y|| = �(x, �, �)� Do(x,y).  (10) 

One may then specify (10) as in the standard SPF framework in (3) by including a symmetric 

multiplicative random error term, exp(�), and representing the output distance function as 

Do(x,y) =exp(-u) (which as required by theory, is bounded between zero and one): 

 ||y|| = �(x, �, �)�exp{- u + v}        (11) 

Estimation can then proceed just as with the single-output framework once a suitable flexible 

functional form is chosen for �(x, �, �).  The form chosen here was the translog13:  

ln ||yt|| = �0 + �
�

�

)(

1

nm

j

�j�ln(zjt )+ ��
�

��

)(

1

nm

kkj

�jk �ln(zjt)�ln(zkt) - uit + vit, 

where the vector z includes each of the m-1 polar coordinate angles (�’s), the n fixed and 

variable inputs, m annual species stock indices (each species-specific stock estimate was 

normalized relative to 1994), and a time variable (t) to capture/represent potential technological 

change.  As mentioned earlier, the inefficiency component of residuals, uit, was parameterized as 

                                                 
11 The polar coordinate angles (�� represent the curvature of the production frontier, which may be derived from the 
partial derivatives of the ray function with respect to the polar-coordinate angles, �	(x, �)/��i, i=1,…M-1. 
12 Specifically, if inputs are strongly disposable (meaning that if a given input bundle can produce a certain level of 
output, then a larger bundle of inputs can also produce that output), then input monotonicity holds.  
13 Note that even though a logarithmic form is used to approximate (11), there are no problems in the case of zero-
valued outputs, as log (�i | yi=0) is well defined (see (8)). 
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uit = �i Dit ��i�	where Dit is a dummy variable equal to one for the ith vessel in each period, zero 

otherwise14.  

 Vessel-level TE scores (estimates of Do(x,y)), can be computed as TEit= E[exp(-uit)| eit].  

Kumbhakar and Lovell (2000) provide further details on the specific formula used in the 

conditional expectation and the likelihood function for the MLE procedure. 

 Once the ray frontier model has been estimated, capacity estimates are obtained by 

evaluating the efficient frontier at the maximal levels of variable inputs discussed earlier.  And, 

with individual vessel capacity estimates in hand, estimates for the fleet as a whole are computed 

by summing capacity output for each vessel in the fleet for each species caught.  These 

computations result in an estimate of the fishing capacity for each different species in the fishery.  

In addition, just as with the DEA models, CU measures will be constructed as the ratio of 

technically efficient output to capacity output, where in this case Ytechnically efficient = Yobserved / 

Do(x,y), and Ycapacity = Ytechnically efficient|x maximum. 

 

III.  Data, Model Results and Discussion 

Both the SPF and DEA models were estimated according to the techniques discussed in 

the previous sections using 180 observations representing annual catch for 30 vessels over 1994-

2000 (some vessels did not participate in all years).  Within the models, “outputs” were given by 

total annual catch of pollock, flatfish, and Pacific cod15, “variable inputs” were specified by total 

annual days at sea, annual tow duration (in hours) and annual crew (in man-weeks), “fixed 

inputs” were given by vessel length, tonnage, and horsepower, and “non-discretionary inputs” 

given by annual stock estimates for pollock, flatfish, and Pacific cod.  Data for these variables 

was obtained from the NMFS “blend” catch estimates, the federal observer program, weekly 

processing reports, federal and ADF&G vessel registration files, U.S. Coast Guard data, and the 

2000 NMFS stock assessment and fishery evaluation report.  

 Estimating the SPF model first entailed testing several forms of the translog specification 

with generalized likelihood ratio tests16.  The test results indicated that the null hypothesis of a 

                                                 
14 One of the vessel dummies was excluded to avoid the “dummy variable trap”, so there are 29 dummy parameter 
estimates and a standard intercept for the inefficiency parameterization. 
15 These three species groups were incorporated because each comprised greater than 5% of total catch in each year.  
Any species not meeting this minimum requirement was not included in the model. 
16 The restricted forms that were tested were a purely linear relationship, a form with only linear and cross terms, a 
form with only linear and squared terms included, and a combination of latter two restricted forms.  
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restricted version of the full translog specification could not be rejected as an appropriate 

representation of the ray frontier function.  This restricted specification included the linear and 

squared terms of the variables discussed above, but omitted some of the cross-terms involving 

vessel tonnage, tow duration, days at sea, and stock indices17.  The parameter estimates, standard 

errors, and asymptotic t-ratios associated with the final specification are given in Table 1.  

Annual mean values for data used in the analysis for 1994-2000 are given in Table 2. 

 As discussed earlier, the capacity estimates developed within the SPF and DEA models 

reflect potential increases in output due to increased TE and CU.  For this reason, a discussion of 

the TE and CU measures underlying the capacity estimates will be provided first.  Note that the 

values of corresponding DEA and SPF measures do differ slightly for each vessel, as would be 

expected when employing different empirical techniques, but the relative values of the DEA and 

SPF measures for each vessel are quite similar.  The Spearman rank correlation coefficient18 

between DEA and SPF TE scores is 0.84, and the coefficient between the corresponding CU 

scores is 0.92.  Note also that the patterns exhibited among the groups and time periods to be 

compared are essentially always the same for the two approaches -- a somewhat comforting 

result.  Therefore, the following discussion will reference the overall trends in TE and CU 

without explicitly recognizing minor differences in the values of the SPF and DEA estimates.    

 The results in Table 2 illustrate the annual changes that occurred in a variety of areas.  

Technical harvesting efficiency generally increased over the sample period, and markedly so 

after implementation of the AFA in 1999.  The same can be said for CU, which had its lowest 

value in 1994 and peaked in 2000.  There was also an increase in the percentage of boats with 

meal plants onboard, a result likely due to the increased retention and utilization requirements of 

1998.  The presence of a meal plant onboard seems to also be correlated with decisions over 

vessel buyouts in 1999, and the choices to idle AFA-eligible vessels in 1999 and 2000. 

 The average per-vessel catch of pollock increased by 20% in 1999, and rose again in 

2000 by an additional 25% (though the total apportionment of catch to these vessels actually fell 

by 42% in 1999 and then increased only 16% in 2000).  These per-vessel increases can be 

                                                 
17 In initial runs, the cross terms involving these variables were insignificant and in some cases resulted in output 
elasticities of incorrect sign (violating curvature conditions).  Once the insignificant cross terms were omitted from 
the model (after generalized likelihood ratio tests verified their lack of significance) all expected monotonicity 
conditions were met. 
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attributed to the exit of nine vessels in 1998, the idling of AFA-eligible vessels within multi-

vessel companies, and the sale of quota from one AFA-eligible vessel to the PCC.  The average 

days at sea also increased from past levels in 1999, and reached an historical peak of 140 days in 

2000.  The per-vessel averages for towing duration and annual crew use exhibited a similar 

trend.   These changes in season length and annual effort are likely results of decreases in the 

number of participants and an absence of the former race for fish. 

 Table 3 provides the capacity estimates that result from scaling up observed catch to 

reflect potential increases from heightened TE and CU.  Focusing on pollock, the average of 

DEA and SPF technical capacity estimates reached a peak of nearly 1.1 million tons in 1994, 

dropping to around 880,000 tons in 1998.  In 1999, post-AFA, pollock capacity dropped by 

around 300,000 tons, nearly a 35% decline (rising slightly from this level in 2000).  At the same 

time, total catch (and capacity) for Pacific cod and flatfish was cut in half from previous 

historical levels and fell again in 2000 (though much more significantly for Pacific cod than 

flatfish).   

 Table 3 also shows how the total “effort” (days, duration, crew) and “capital stock” (tons, 

length, horsepower) used in harvesting and processing have changed since the AFA was 

implemented.  The numbers shown for effort are summed over all vessels for all weeks in the 

year.  Generally, the total fishery effort variables fell by around 30% in 1999, and rose slightly in 

2000.  Total capital stock variables for the fleet reflect the sum of each of the vessel 

characteristics over all vessels that participated in the fishery in each year.  While these 

representations of capital are admittedly crude and ignore processing equipment onboard, they 

do provide a rough indication of the aggregate “fishing power” and likely provide more 

information than merely stating the number of vessels that participated19.  These measures of 

capital peaked in 1994 and were at their lowest in 2000.  As with some of the previously 

discussed measures, this decline is mainly attributable to the AFA buyback and the idling of 

vessels in 1999 and 2000.   

 It should be evident at this point that some marked changes occurred in this fleet after the 

AFA was implemented.  However, it is not entirely clear at first glance whether the increases in 

                                                                                                                                                             
18 The Spearman rank correlation coefficient is defined as S = 1 – [6*
i(Ri – Qi) / n(n2 – 1)], where Ri is the rank of 
vessel i in the SPF rankings (ranked according to either TE or CU scores), Qi is the rank of vessel i in the DEA 
rankings, and n is the number of observations. 
19 In addition, it is fairly common to use measures of vessel length, tonnage, and horsepower as proxies for capital. 
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TE and CU occurred because the decommissioned vessels were historically lower in these areas 

than continuing vessels, or if the continuing vessels’ TE and CU rates sharply increased because 

of the provisions in AFA.  Therefore, it is instructive to analyze the historical relative 

performance of the AFA-eligible and AFA-ineligible vessels from 1994-1998 to see how they 

fared relative to one another.  In addition, the TE and CU of the AFA-eligible, non-idled vessels 

will be analyzed from 1994-2000 to see if their performance changed after 1998 relative to the 

past.  Each of these questions will now be addressed in turn. 

 Table 4 provides a comparison of the average values of different measures for each of the 

AFA-eligible and AFA-ineligible groups.  While the CU levels for eligible vessels are only 

slightly higher than ineligible vessels, the differences in TE are much larger, by about 0.119 on 

average.  This implies that comparably sized eligible vessels produced on average about 16% 

more output than the ineligible vessels for a given level of effort for 1994-199820.  However, the 

eligible vessels were on average much larger and more powerful than the ineligible vessel (and 

thus had greater mean catch levels for pollock).  One potential cause of the greater TE exhibited 

by the (larger) eligible vessels could be scale efficiencies; elasticity of scale estimates from the 

SPF model, computed as the sum of output elasticities (�i	�ln||y|| / �lnxi), indicate the presence of 

increasing returns to scale.    

 The additional question of whether the non-idled eligible vessels exhibited increased TE 

and CU after implementation of the AFA can be addressed by examining Table 5.  For this 

subset of vessels, the TE estimates from the DEA and SPF models differ more in magnitude than 

the previous comparisons, but still show the same annual patterns21: the lowest scores occur in 

1994, and the highest scores in 1997 (and 2000 for the SPF model).   

 There are at least two potential explanations for why the TE scores in 1997 exceed those 

after the AFA was implemented.  First, after 1997, increased retention and utilization 

requirements dictated that meal production became an integral part of processing.  While 

decreasing discards overall, this activity slows the harvesting-processing chain down more than 

                                                 
20 For example, the average of DEA and SPF TE scores for eligible vessels is .8585, and the average for ineligible 
vessels is 0.743.  Thus, for a given vessel size and effort level, Yeligible/0.8585=Y*, and Yineligible/0.743=Y*, or 
Yeligible=1.16�Yineligible.    
21 The DEA scores show a greater amount of variation from year to year relative to the SPF scores.  The lowest SPF 
score (in 1994) only differs from the highest (in 1997 and 2000) by 0.028, while the lowest DEA score (in 1994) is 
0.107 less than the highest (in 1997).  This result is to be expected, as DEA is more sensitive to year-to-year changes 
while SPF models tend to smooth out such shocks to some degree.  See Coelli, Rao, and Battese (pg. 240) for a 
further discussion of this issue.   
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simply discarding undesirable catch.  Such effects compounded with increasing Stellar sea lion 

closures could have offset some of the potential gains in harvesting efficiency afforded by the 

post-AFA changes.  Second, it is possible that the potential gains in harvesting efficiency were 

small; most of the perceived gains of the AFA seem to be related to processing, and the 

associated increases in product recovery rates22 and product grades.  In fact, it is likely that 

tradeoffs were made between harvesting efficiency and the quality of processed products, as 

evidenced by the observed slowdown of operations.  However, since the present analysis does 

not account for differences in processing and quality, only the effects on harvesting efficiency 

are evident.   

 An additional question to be examined is how the AFA-eligible vessels that were idled in 

1999 or 2000 differed from the active, eligible vessels.  In particular, one might wonder if the TE 

and CU scores constructed here could be used as an indicator of which vessels were likely to be 

idled within a company (in situations where a company owned multiple vessels).  To examine 

this question, Table 6 presents a variety of average measures for the two groups of vessels (AFA 

eligible/idled and AFA eligible/active) over the periods prior to implementation of the AFA. 

 With regard to technical harvesting efficiency, the active vessels’ average TE scores 

exceeded idled vessels' corresponding scores by about 0.1 on average from 1994-1998, 

producing approximately 13% more than idled vessels for a given vessel size and effort level.  

The CU scores of active vessels greatly exceeded those of the idled vessels for the 1994-1998 

period, by an average of around 0.16 for the SPF and DEA models.  These findings together 

suggest that the vessels that were active post-AFA had historically caught more fish for a given 

vessel size and effort level than did vessels that were idled post-AFA, and that the active vessels 

exerted considerably more fishing effort than similarly sized idled vessels for the 1994-1998 

period.  While the available data does not provide detailed information why the AFA-active 

vessels had been utilized to a greater degree prior to the AFA, information regarding the 

existence of a meal plant onboard does provide an additional possible reason certain vessels were 

idled.  Only 20% of the AFA-idled vessels had meal plants on board, while 70% of the AFA-

active vessels had the capability to produce. 

                                                 
22 The product recovery rates are reported to have increased by 26% during 1999 over the 1998 baseline, and by 
35% in 2000 relative to 1998 (PCC and HSCC, 2001). 
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 To more formally evaluate the predictive power of the CU and TE scores in idling or 

eligibility decisions, logit models were run.  The premise of these regressions was that the 

observed choices could be explained by TE and CU scores.  A dummy variable for the ability to 

produce meal was also included in the models23, as this factor may have been important in such 

decisions and was not included in the original frontier models.  Table 7 shows the result of four 

logit models for the following four choices: 1) AFA-eligible vs. AFA-ineligible; 2) eligible-

active vs. eligible-idled; 3) eligible-active vs. eligible-idled for just company 1; and 4) eligible-

active vs. eligible-idled for just company 224.   

 The results of the models indicate that the predictive power of the TE and CU scores (and 

meal producing ability) is pretty good.  These factors led to correct predictions 78 percent of the 

time for eligible vs. ineligible status, with TE scores and meal capability contributing 

significantly  (CU scores were highly insignificant).  For the active or idled status of AFA-

eligible vessels, the logit model had 85 percent of the predictions correct, and was significantly 

influenced by CU and meal capability.   

 A similar level of predictive power emerged when models were run comparing an 

individual company’s idled/active vessels, yielding correct predictions for 83 percent of the 

observations for company 1, and 74 percent correct for company 2.  Within the company 1, two 

vessels were idled.  One of these vessels exhibited the lowest TE score for all vessels in that 

company for 1994-1998 according to both the DEA and SPF models.  It is also lacking a meal 

plant, is relatively small, and exhibited less than average CU relative to the other vessels in the 

company.  The other idled vessel, however, is not quite as obvious a candidate for idling.  For 

example, it does have meal capability and ranks among the highest in TE scores according to the 

SPF model (and near the middle for DEA).  Instead, it is the CU scores that point to this vessel as 

a potentially less desirable vessel to operate; both SPF and DEA scores indicate that this vessel 

has by far the lowest historical utilization rate of all vessels in the company.  This result could be 

due to the age, lack amenities on board, processing inflexibility, or a host of other factors.  Still, 

one might think that a vessel that was utilized relatively little in the past may not be as useful to a 

company looking to diminish their active fleet size.  

                                                 
23 The meal dummy was not be included in the company specific idled/active regressions, as vessel’s status was 
perfectly predicted by the presence of a meal plant when included in the model, prohibiting convergence.   
24 There were only two companies who had multiple vessels and chose to idle one or more of them.  For 
confidentiality reasons we will refer to them as company one and company two. 



 17

 Turning to the company 2, one finds that 3 vessels were idled in 1999 or 2000.  

According to both the SPF and DEA models, these 3 vessels exhibited the lowest TE scores in 

the company (two of which are especially low).  Exacerbating this potential shortcoming is a 

lack of meal plants onboard for any of these 3 vessels and the presence of meal capability for all 

other active vessels.  The CU scores for these vessels seem a bit less consistently informative 

with regard to the idling decision than with the former company, as the CU scores are near the 

lowest for two of the three vessels, but relatively high for the other.  This result is also supported 

in the logit model for company 2, in which the coefficient on CU was highly insignificant. 

 It should be noted that the discussion of the relative CU and TE scores up to this point 

has made little mention of whether two groups were “significantly” different.  While remarks 

have been made regarding differences in magnitude of measures for two groups or time periods, 

no formal statistical tests have been conducted on whether the differences are significant relative 

to the overall variation in the estimates.  In order to examine these issues more formally, and to 

solidify the findings of the previous discussion, hypothesis tests were carried out regarding the 

equality of TE and CU scores for several comparisons of interest.  In particular, tests for equality 

of means (for TE and CU) were carried out for the following groups: AFA-eligible and AFA 

ineligible vessels, AFA-eligible/active vessels before and after the AFA was implemented, AFA-

eligible/active and AFA-eligible/idled vessels, vessels with and without meal plants, and inter-

company comparisons.   

 To carry out these tests, the two-step method (Ray [1991], Fizel and Nunnikhoven 

[1992], and McCarty and Yaisawarng [1993], Yu [1998]) was employed25.  This approach 

involves regressing the TE (and CU) scores from a first-stage model upon continuous or 

categorical uncontrollable variables in order to find explainable differences among individuals or 

groups with different characteristics (that are not explicit inputs in the production process).  

Here, the TE and CU scores for two groups or periods were regressed upon dummy variables for 

each of the groups or periods, facilitating inference through statistical tests of whether the mean 

                                                 
25 The two-stage approach was applied only to the DEA results only because of the distributional assumptions that 
are present in the SPF model.  In particular, in the first stage it is assumed that the inefficiency effects are 
independently and identically distributed.  The second stage regression looks for firm or group specific factors that 
explain the inefficiency effects, implying that the effects are not identically distributed.  One method for carrying out 
statistical tests on SPF results is the Wilcoxian signed-rank test (Sheskin, 2000), or the procedure outlined in Bera 
and Sharma (1999). 
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levels of TE or CU are different26.  Because the TE and CU scores are truncated from below at 

one, a Tobit model was used to conduct the regressions.  Next, hypothesis tests for equality of 

means (intercepts) between groups or periods of interest for the TE and CU scores were 

conducted.   

 The results of the tests are given in Table 8, and indicate the following: 1) the historical 

TE of AFA-eligible vessels exceeded that of AFA-ineligible vessels; 2) the CU of AFA-eligible 

vessels increased post-AFA relative to past years; 3) the pre-AFA TE and CU of AFA-

eligible/active vessels exceeded that of the AFA-eligible/idle vessels; 4) the TE of vessels with 

meal plants was greater than that of vessels without meal plants; 5) the TE and CU scores of 

company 1’s idled vessels were significantly lower than the active vessels; and 6) the TE scores 

of idled vessels within company 2 were significantly lower than their active vessels.  The 

motivations for, and potential repercussions from, these differences were provided in the earlier 

discussion. 

 While TE and CU levels provide only a small part of the information necessary to assess 

overall vessel performance, as illustrated above they can be useful in assessing capacity and 

certain aspects of economic performance.  In addition, owner’s decisions to idle or operate a 

vessel – made by those best informed with regard to the relative profitability of vessels – appear 

to be considerably correlated with the TE and CU measures, which can be estimated using 

commonly available data in Alaskan FMP fisheries.  However, as the meal capability factor 

illustrated above, there are other “real world” factors that must be considered along with these 

more abstract measures when analyzing the actions taken by vessel owners. 

 

IV.  Conclusion 

 In addition to the caveats placed on the extent to which these technological measures 

characterize profitability, it is important to note the potential biases and shortcomings of the 

existing measures.  First, while efforts were made to incorporate as many of the inputs used in 

production for which data is available, the set included in the model is not complete.  For 

example, vessel characteristic data is used as a proxy for heterogeneous capital or fixed inputs.  

                                                 
26 Note that these tests look only at the distribution of the resulting DEA estimates when analyzing the significance 
of the differences in TE and CU among producers.  Uncertainty regarding the first-stage estimates is not 
incorporated because of the non-stochastic nature of the DEA model.    
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However, it is unlikely that each of the vessels sharing the same length, tonnage, and horsepower 

have an identical, productive capital stock.   

 Similarly, the group of effort variables (days at sea, tow duration, crew size) representing 

“variable inputs” serve as proxies for the numerous inputs that are exhausted within a trip.  The 

most obvious result of omitting relevant inputs is that the efficiency comparisons in the models 

may be affected.  For example, if two vessels used identical levels of the observed inputs, but 

one vessel had much greater catch, the models would give it a higher TE score.  However, it may 

be the case that this vessel used much more of another omitted input and is thus not more 

efficient than the other. 

 The second potential shortcoming of the current models relates to possible 

misinterpretation of the capacity estimates.  As discussed in the introduction, these measures, 

while based on observed production, are physical/technical measures and do not necessarily 

represent what would be produced -- just what could be produced.  And further, what could be 

produced if captains could somehow increase harvesting efficiency to match other similarly sized 

vessels, and could increase the amount of time spent fishing to match the highest levels exhibited 

by vessels similar in size to theirs.   

 It should also be emphasized that “full” capacity utilization (CU=1) may not represent 

cost-minimizing or profit-maximizing effort levels for any or all vessels, and may not be 

realistically sustainable.  That said, since the CU measures do provide an indication of how much 

one is attempting to get out of a vessel of a given size, they are likely have the greatest relevance 

in fisheries where there is almost certainly excess capacity at the individual vessel level.  In such 

cases, greater values of CU are more likely to be correlated with lower costs per unit of output.  

 Finally, it is important to emphasize that the relative levels of TE estimated in the models 

represent only a portion of the factors that determine the profitability of a vessel.  The measures 

constructed here examine how close a vessel lies to a production possibilities frontier, but ignore 

where the observed output mix is relative to a point of tangency between output shadow values 

and the iso-revenue surface (which determines the point of allocatively efficient production).  

Alternatively stated, the model does not judge whether the observed output composition is 

optimal given market prices, or whether input use is optimal given input prices, but looks solely 

at the quantity of output one gets from a given bundle of inputs.  However, since both the 

technical and allocative elements have important and distinct roles in performance evaluation, 
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information regarding the technical aspects can be enlightening if the findings are qualified 

appropriately.                              



 21

 

Table 1.  SPF Ray Production Function Parameter Estimates  
 
Parameter Coefficient Standard Error Asymp. T-Ratio 
�0 ; intercept -9.770 0.988 -9.888 
�1 ; ln(�1) 6.567 1.265 5.191 
�2 ; ln(�2) 2.371 1.041 2.278 
�3 ; ln(length) 0.663 1.820 0.364 
�4 ; ln(tonnage) 0.507 0.368 1.377 
�5 ; ln(hp) 3.920 0.783 5.008 
�6 ; ln(duration) 0.999 0.509 1.962 
�7 ; ln(crew) -1.058 0.818 -1.293 
�8 ; ln(days) 0.338 0.159 2.121 
���		ln(pollock index) 10.322 0.742 13.915 
����	ln(P.cod index) 0.693 2.696 0.257 
����	ln(flatfish index) 35.806 0.385 92.890 
�12; ln(t) 3.184 0.106 30.144 
�13 ; ln(�1��2) 2.527 0.910 2.777 
�14 ; ln(�1�length) 1.370 0.689 1.989 
�15 ; ln(�1�hp) -1.171 0.282 -4.149 
�16 ; ln(�1�crew) -0.198 0.103 -1.914 
�17 ; ln(�1�t) -0.046 0.019 -2.422 
�18 ; ln(�2�length) 0.585 1.643 0.356 
�19 ; ln(�2�hp) -0.826 0.566 -1.460 
�20 ; ln(�2�crew) 0.806 0.411 1.958 
�21 ; ln(�2�t) -0.194 0.086 -2.252 
�22 ; ln(length�hp) 0.034 0.342 0.101 
�23 ; ln(length�crew) -0.381 0.209 -1.823 
�24; ln(hp�crew) 0.068 0.126 0.536 
�25; ln(crew�t) -0.029 0.014 -2.071 
�26; ln(pollock index�P.cod index) 17.102 1.195 14.307 
�27; ln(pollock index�flat index) 8.458 1.258 6.721 
�28; ln(P.cod index�flat index) 42.218 1.457 28.975 
�29; (ln(�1))2 1.988 0.176 11.313 
�30; (ln(�2))2 -0.302 0.230 -1.317 
�31; (ln(length))2 0.026 0.885 0.029 
�32; (ln(tonnage))2 -0.087 0.067 -1.295 
�33; (ln(hp))2 -0.343 0.207 -1.656 
�34; (ln(duration))2 -0.187 0.098 -1.899 
�35; (ln(crew))2 0.242 0.154 1.575 
�36; (ln(days))2 -0.210 0.201 -1.045 
�37; (ln(pollock index))2 -7.832 1.322 -5.923 
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Table 1.  Ray Production Function Parameter Estimates (cont.) 
 
Parameter Coefficient Standard Error Asymp. T-Ratio 
�38; (ln(P.cod index))2 -47.700 1.138 -41.911 
�39; (ln(flat index))2 100.798 1.031 97.727 
�40; (ln(t))2 -0.235 0.026 -8.920 
�

2 0.020 0.003 6.009 

 0.739 0.051 14.537 
    
�0 -0.338 0.194 -1.743 
�1 0.854 0.238 3.591 
�2 0.762 0.256 2.980 
�3 0.967 0.219 4.411 
�4 0.354 0.265 1.336 
�5 0.776 0.224 3.468 
�6 0.597 0.217 2.747 
�7 0.546 0.220 2.488 
�8 0.621 0.210 2.959 
�9 0.276 0.280 0.986 
�10 0.574 0.215 2.667 
�11 0.494 0.211 2.339 
�12 0.295 0.250 1.180 
�13 0.472 0.223 2.115 
�14 -0.179 1.081 -0.166 
�15 -0.424 0.635 -0.667 
�16 0.556 0.221 2.520 
�17 0.130 0.444 0.292 
�18 0.272 0.274 0.995 
�19 -0.608 0.619 -0.983 
�20 0.261 0.328 0.794 
�21 0.775 0.206 3.754 
�22 -0.653 0.461 -1.415 
�23 0.526 0.226 2.328 
�24 0.705 0.215 3.281 
�25 0.321 0.259 1.240 
�26 0.980 0.226 4.346 
�27 0.677 0.203 3.334 
�28 0.633 0.219 2.887 
�29 0.710 0.202 3.513 
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Table 4.  Comparisons of Average Values Among AFA Ineligible and Eligible
                Vessels, 1994-1998 

   
 AFA Ineligible AFA Eligible 

SPF Do(x,y) (Efficiency) 0.744 0.845 
DEA Do(x,y) (Efficiency) 0.742 0.872 
   
SPF Capacity Utilization 0.782 0.817 
DEA Capacity Utilization 0.808 0.834 
   
% of Vessels with Meal Plants 10% 60% 
   
Pollock Catch 15,287 24,086 
Pacific Cod Catch 1,178 555 
Flatfish Catch 623 1,411 
   
Days at Sea (vessel-days) 115 115 
Tow Duration (hours) 1,461 1,371 
Crew (man-weeks) 1,612 1,899 
   
Registered Tonnage 670 1,736 
Length (feet) 217 278 
Horsepower 3,939 5,500 
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Table 6.  Comparison of Averages Among AFA-Eligible/Idled and 
                AFA-Eligible/Active Vessels 1994-1998 

   
 AFA-Eligible/Idled AFA-Eligible/Active 

   
SPF Do(x,y) (Efficiency) 0.761 0.864 
DEA Do(x,y) (Efficiency) 0.783 0.891 
   
SPF Capacity Utilization 0.677 0.847 
DEA Capacity Utilization 0.710 0.861 
   
% of Vessels with Meal Plants 20% 70% 
   
Pollock Catch 16,229 25,770 
Pacific Cod Catch 198 631 
Flatfish Catch 2,306 1,219 
   
Days at Sea (vessel-days) 113 116 
Tow Duration (hours) 1,368 1,372 
Crew (man-weeks) 1,447 1,996 
   
Registered Tonnage 1,900 1,701 
Length (feet) 254 284 
Horsepower 4,604 5,692 
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Table 7.  Logit Models of AFA-Eligible/AFA-Ineligible and Idled/Active Status 
 

Eligible vs. Ineligible 
  
Number Obs.= 147 % Correct Predictions = 0.782 R-squared = 0.253

 
Parameter Estimate Standard Error T-Statistic P-value �Prob./�xi

� -1.770 1.200 -1.473 0.140 -0.282
�meal plant 2.242 0.576 3.890 0.000 0.357
�CU -0.483 1.241 -0.389 0.697 -0.077
�Do 2.860 1.331 2.147 0.032 0.455
 

Eligible-Active vs. Eligible-Idled 
  
Number Obs.= 103 % Correct Predictions = 0.845 R-squared = 0.373

 
Parameter Estimate Standard Error T-Statistic P-value �Prob./�xi

� -5.233 1.900 -2.754 0.006 -0.644
�meal plant 2.894 0.693 4.171 0.000 0.356
�CU 4.147 1.836 2.258 0.024 0.511
�Do 1.879 1.749 1.073 0.283 0.231

 
Eligible-Active vs. Eligible-Idled -- Company 1 

  
Number Obs.= 35 % Correct Predictions = 0.829 R-squared = 0.585

 
Parameter Estimate Standard Error T-Statistic P-value �Prob./�xi

� -50.869 22.872 -2.224 0.026 -4.819
�CU 41.247 18.949 2.176 0.030 3.908
�Do 21.482 10.334 2.078 0.038 2.035

 
Eligible-Active vs. Eligible-Idled -- Company 2 

  
Number Obs.= 23 % Correct Predictions = 0.739 R-squared = 0.370

 
Parameter Estimate Standard Error T-Statistic P-value �Prob./�xi

� -10.396 4.603 -2.258 0.024 -1.661
�CU 4.426 3.983 1.110 0.267 0.707
�Do 9.222 3.926 2.348 0.019 1.474
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Non-Technical Appendix 

Although this is a technical working paper, it is also part of a public document that will 

be read by an audience with widely ranging backgrounds.  In order to make the technical aspects 

of the capacity, CU, and TE estimation more accessible to all readers, the following discussion 

provides a less detailed, more intuitive description of the methods that underlie the empirical 

application to the pollock catcher-processor fleet. 

 The general methodology behind the methods used here is to represent the relationship 

between inputs used in harvesting, the stock of fish, and the resulting catch levels.  Once this 

relationship has been estimated, one can then say something about how catch levels would 

change if fishing effort (variable input use) or harvesting efficiency increased.  Because the focus 

is to estimate the fishing capacity of the fleet (and observed how it changed after the AFA was 

implemented), the techniques chosen to characterize production relationships are different than 

the commonly employed “production function.” 

Specifically, rather than looking at average relationships among inputs, stocks, and catch, 

(as a production function does), this paper examines the observed “best-practice” technology27 -- 

generating a production frontier that represents the largest catch levels obtainable from a given 

level of inputs and fish stocks.  By constructing such a frontier one is able to not only 

characterize the relationship between inputs and catch, but also make comparisons between the 

observations on the frontier and those for which less catch was generated (from the same level of 

inputs).  These comparisons generate relative technical efficiency (TE) measures, in which those 

who have used the least amount of inputs or effort to obtain a particular level of catch are 

considered the most efficient, and those exerting greater levels (yet catching the same amount) 

are considered less efficient. 

Two commonly used methods for estimating frontier relationships are data envelopment 

analysis (DEA) and the stochastic production frontier (SPF) model.  DEA uses linear 

programming techniques to develop a representation of the frontier, while SPF uses econometric 

methods to estimate an equation representing the frontier.  Regardless of the method employed, 

once the frontier is estimated each vessel’s observed catch and effort level can be compared to 

                                                 
27 This step is only the first part of estimating capacity.  The second step involves examining how the best-practice 
catch would increase with increased levels of fishing effort (as will be described next). 
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the best-practice catch, and the potential increase in output is computed – showing how catch 

would increase if the observed production inefficiency was eliminated. 

The next step in estimating capacity is to determine the extent to which catch would 

change if fishing effort was also increased.  This is accomplished in the DEA and SPF models by 

shifting up the frontier in response to a hypothetical increase in the level of fishing effort 

(represented in this paper by days at sea, tow duration, and crew size).  These increases in fishing 

effort can be thought of as increase in capacity utilization (CU), as more variable inputs are 

being combined with the given capital stock.  In this analysis, the increase in effort levels used to 

generate capacity estimates was based on the highest levels exhibited by vessels of a similar size 

over the span of the data28.  Some vessels’ typical effort levels were near the maximum for their 

size class – indicating high levels of CU – while others’ were much lower than the maximum 

(implying lower CU for these vessels).  The values of CU (and TE) are discussed in the paper for 

different groups and time periods. 

The final step in computing the capacity estimates was to scale up the observed catch 

levels for each vessel (for each species) to reflect the potential gains in TE and CU implied in the 

frontier models.  Capacity estimates for the pollock catcher-processor fleet as a whole were 

computed by summing the species-specific capacity estimates for each individual vessel.  See the 

discussion of the model results on pages 14-23 for further details.     

  

 

                                                 
28 One could instead insert purely hypothetical levels – perhaps greater than levels ever observed – but the resulting 
capacity estimates would likely bear little resemblance to anything that would ever be caught in the fishery. 


